Package: ggdmc 0.2.8.1

ggdmc: Cognitive Models

The package provides tools to fit the LBA, DDM, PM and 2-D diffusion models, using the population-based Markov Chain Monte Carlo.

Authors:Yi-Shin Lin [aut, cre], Andrew Heathcote [aut]

ggdmc_0.2.8.1.tar.gz
ggdmc_0.2.8.1.zip(r-4.5)ggdmc_0.2.8.1.zip(r-4.4)ggdmc_0.2.8.1.zip(r-4.3)
ggdmc_0.2.8.1.tgz(r-4.4-x86_64)ggdmc_0.2.8.1.tgz(r-4.4-arm64)ggdmc_0.2.8.1.tgz(r-4.3-x86_64)ggdmc_0.2.8.1.tgz(r-4.3-arm64)
ggdmc_0.2.8.1.tar.gz(r-4.5-noble)ggdmc_0.2.8.1.tar.gz(r-4.4-noble)
ggdmc_0.2.8.1.tgz(r-4.4-emscripten)ggdmc_0.2.8.1.tgz(r-4.3-emscripten)
ggdmc.pdf |ggdmc.html
ggdmc/json (API)

# Install 'ggdmc' in R:
install.packages('ggdmc', repos = c('https://yxlin.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/yxlin/ggdmc/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

4.66 score 19 stars 24 scripts 312 downloads 49 exports 41 dependencies

Last updated 3 months agofrom:de30bc2b1e. Checks:OK: 1 WARNING: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-win-x86_64WARNINGNov 22 2024
R-4.5-linux-x86_64WARNINGNov 22 2024
R-4.4-win-x86_64WARNINGNov 22 2024
R-4.4-mac-x86_64WARNINGNov 22 2024
R-4.4-mac-aarch64WARNINGNov 22 2024
R-4.3-win-x86_64WARNINGNov 22 2024
R-4.3-mac-x86_64WARNINGNov 22 2024
R-4.3-mac-aarch64WARNINGNov 22 2024

Exports:acautocorrBuildDMIBuildModelBuildPriorcheck_pvecdbeta_ludcauchy_ldcircledcircle300dconstantdeviance_modeldgamma_lDICdlnorm_ldtnormdvonmiseseffectiveSizegelmanget_osGetNsimGetParameterMatrixGetPNamesiseffectiveisflatismixedisstucklikelihoodlogLikPickStuckplotprintptnormpvonmisesr1drandomrcirclercircle_processrlba_normrpriorrtnormrunrvonmisessimulateStartNewsamplessummaryTableParameterstrial_loglik_hierunstick_one

Dependencies:abindbackportscheckmateclicolorspacedata.tabledistributionalfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmgcvmunsellnlmenumDerivpillarpkgconfigposteriorR6RColorBrewerRcppRcppArmadillorlangscalestensorAtibbleutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Calculate the autocorrelation of a vectorac
Autocorrelation Plotautocorr
Bind data and modelsBuildDMI
Create a model objectBuildModel
Specifying Prior DistributionsBuildPrior
Does a model object specify a correct p.vectorcheck_pvec
Convergence DiagnosisCheckConverged isflat isflat,list-method isflat,posterior-method ismixed ismixed,posterior-method isstuck isstuck,hyper-method isstuck,list-method isstuck,posterior-method PickStuck PickStuck,hyper-method PickStuck,list-method PickStuck,posterior-method
A modified dbeta functiondbeta_lu
A modified dcauchy functionsdcauchy_l
Two-dimension Diffusion Modeldcircle dcircle300 r1d rcircle rcircle_process
A pseudo constant function to get constant densitiesdconstant
Calculate the statistics of model complexitydeviance_model
A modified dgamma functiondgamma_l
Deviance Information CriteriaDIC DIC,hyper-method DIC,list-method DIC,posterior-method
A modified dlnorm functionsdlnorm_l
An S4 class of the Data-model Instancedmi-class
Truncated Normal Distributiondtnorm ptnorm rtnorm
Effective Sample SizeeffectiveSize effectiveSize,hyper-method effectiveSize,list-method effectiveSize,posterior-method
Potential scale reduction factorgelman gelman,hyper-method gelman,list-method gelman,posterior-method
Retrieve information of operating systemget_os
Get a n-cell matrixGetNsim
Constructs a ns x npar matrix,GetParameterMatrix
Extract parameter names from a model objectGetPNames
Cognitive Multilevel Modelsggdmc-package ggdmc
An S4 class to represent an object storing posterior samples at the participant and hyper levelhyper-class
Model checking functionsiseffective
Calculate log likelihoodslikelihood
Extract Posterior Log-LikelihoodlogLik logLik,hyper-method logLik,list-method logLik,posterior-method
An S4 class of the process model.model-class
The Parameter Names in a Prior Objectnames,prior-method
ggdmc Plotting Methodsplot plot,hyper-method plot,list-method plot,posterior-method plot,prior-method
An S4 class to represent an object storing posterior samples at the participant level. Posterior samples storing both the participant and the hyper lever are represented by an S4 class hyperposterior-class
ggdmc Printing Methodsprint print,model-method print,prior-method
An S4 class to represent an object storing prior distributionsprior-class
Random number generationrandom
Generate Random Deviates of the LBA Distributionrlba_norm
Generate Random Numbersrprior rprior,prior-method
Generate random deviates from a von Mises distributiondvonmises pvonmises rvonmises
Simulate Choice Responsessimulate,model-method
Start new model fitsrun StartNewsamples
ggdmc Summary Methodssummary summary,hyper-method summary,list-method summary,posterior-method
Table response and parameterTableParameters
Extract trial log likelihoodstrial_loglik_hier
Unstick posterios samples (One subject)unstick_one